
Unset

Document Purpose
This is the InfluxDB Clustered Getting Started Guide. Its purpose is to guide you through the
process of deploying an InfluxDB Cluster. The process consists of 3 parts:

● Set up the prerequisites
● Configure and install InfluxDB
● Use the cluster to confirm that the cluster is correctly set up.

Document conventions
Throughout the document we'll use the string <package-version> as a placeholder for the
package version mentioned inside the example-customer.yaml file. e.g

us-docker.pkg.dev/influxdb2-artifacts/clustered/influxdb:xxxxxxxx-yyyyyy
^^^^^^^^^^^^^^^
package-version

For simplicity the document will always reference the filename myinfluxdb.yml and the
namespace influxdb but you're free to pick whatever name suits you.

Part 1 - Setting up the prerequisites
The following are the prerequisites needed for InfluxDB clustered.

● Kubernetes cluster - Version 1.25 or higher
● Object storage (S3 or compatible) to store the InfluxDB parquet files
● Postgres compatible database (AWS Aurora or hosted Postgres, etc) - for the InfluxDB

catalog (supported versions: 13.8 to 14.6)
● OAuth 2.0 provider

○ Requires support of Device Authorization Flow
○ Tested and supported: Azure Active Directory, Keycloak, Auth0

● TLS certificate (for ingress to the cluster)

Cluster sizing recommendation
For a medium-size workload (ref: https://www.influxdata.com/resources/influxdb-3-0-vs-oss/) we
have configured our cluster on AWS as follows:

- S3 for object store (size is determined by how much data you write)
- Aurora Postgresql - serverless v2 scaling configuration (2-64 ACUs)
- EC2 instances - primarily m6i.2xlarge (8 CPU, 32GB RAM)

- 3 m6i.2xlarge instances for ingesters/routers (with min 2Gi local storage)

InfluxData Confidential

https://auth0.com/docs/get-started/authentication-and-authorization-flow/device-authorization-flow
https://www.influxdata.com/resources/influxdb-3-0-vs-oss/

- 3 m6i.2xlarge instances for queriers
- 1 m6i.2xlarge instance for compactor
- 1 t3.large for K8s control plane

Your sizing may need to be different, based on your environment and your workload, but this is
a reasonable starting size for your initial testing.

Kubernetes setup
● You must be running v1.25 or higher of Kubernetes.
● You will need to be able to create two namespaces - influxdb and kubit.
● An Ingress controller must be installed in the cluster (currently we support Nginx but

others may work) and a mechanism to obtain a valid TLS certificate (e.g. certmanager or
provide the certificate PEM manually out of band).

● Access to the Influx container registry must be available from your Kubernetes cluster (or
if running in an air-gapped environment, a local container registry to which you will need
to copy the Influx images)

Note: It is strongly recommended that you run the Postgres-compatible database (which
will house the InfluxDB Catalog) and the Object Store (which will house the InfluxDB
parquet files) in a separate namespace from InfluxDB or external to Kubernetes entirely.
Running the Catalog database and Object Store in a separate namespace/outside of
Kubernetes makes management of the InfluxDB instance easier and prevents the potential for
accidental data loss.

Local storage setup
The ingester pods need some local storage (for the Write-Ahead-Log). We recommend a
minimum of 2Gi.

OAuth2 Server setup
InfluxDB requires access to an OAuth2 authentication service to authenticate user access. The
OAuth2 service requires support of Device Authorization Flow. Internally we have tested with
Azure Active Directory, Keycloak, and Auth0, but the software should work with any OAuth2
provider. To access the OAuth2 server, we will need the configured client ID, the JWKS
endpoint, the device authorization endpoint, and the token endpoint.

Client Software setup
On the system/laptop from where you’ll be configuring the cluster you’ll need to have the
following installed:

● Kubectl v1.27
● Yq
● jq
● Crane

InfluxData Confidential

https://github.com/kubernetes/ingress-nginx
https://auth0.com/docs/get-started/authentication-and-authorization-flow/device-authorization-flow
https://github.com/mikefarah/yq
https://jqlang.github.io/jq/
https://github.com/google/go-containerregistry/blob/main/cmd/crane/README.md

Part 2 - Configuring and installing InfluxDB
Make sure you have the following items provided by InfluxData:

● A tar-ball that contains:
○ Clustered: Getting Started Runbook.pdf (This document)
○ example-customer.yml

■ Where you will define the configuration for the InfluxDB Clustered
product, including information about the prerequisites

■ Note that throughout this document we refer to myinfluxdb.yml, this is a
copy of the example-customer.yml that you edit as outlined below.

○ app-instance-schema.json
■ This defines the schema for example-customer.yml

● Authenticated docker config file - influxdb-docker-config.json
The InfluxDB software is in a container registry, and the provided influxdb-docker-config.json file
gives you access to the collection of container images that are required to install InfluxDB
Clustered.

Configuration data
When you are ready to install InfluxDB, you will need to have the following information available
to configure InfluxDB 3.0:

1. The hostname via which K8s will expose the InfluxDB API endpoints
2. A postgresql style DSN that points at your postgresql compatible database
3. Object store

a. Endpoint URL
b. Access key
c. Bucket name
d. Region (required for S3, may not be required for other object stores)

4. Local storage (ingester pods)
a. Storage class
b. Storage size

5. OAuth2
a. Client ID
b. JWKS endpoint
c. Device authorization endpoint
d. Token endpoint

Deploy InfluxDB
InfluxDB is deployed in one kubernetes namespace. Throughout the installation procedure, this
namespace is referred to as the "target" namespace.

You're free to pick any name for the namespace but for simplicity the rest of this document will
assume that everything is deployed in the influxdb namespace.

InfluxData Confidential

Unset

Unset

The InfluxDB installation/upgrade and re-configuration process is driven by editing and applying
a Kubernetes Custom Resource called AppInstance.

The Kubernetes Custom Resource is defined in a YAML file (you can use
example-customer.yml as a starting point) that contains key information, such as:

1. the name of the target namespace
2. the version of the InfluxDB package
3. the reference to the container registry pull secrets
4. the hostname on which the API will be exposed
5. parameters to connect to external prerequisites, such as authn tools, object store, …

We'll now go through a step-by-step guide that will show you how to install InfluxDB on your
kubernetes cluster. Start by copying the example-customer.yml file so that you can edit it as
you go through each step.

cp example-customer.yml myinfluxdb.yml

Edit myinfluxdb.yml in your favorite text editor.

The VSCode editor is a good choice since it has a simple way to associate a JSON Schema
which can help with autocompletion and validation ensuring the best experience in editing your
influxdb parameters. We’ve provided app-instance-schema.json for this use case.

Step 1: Create a namespace for InfluxDB
Before installing InfluxDB the target namespace must exist. Your friendly admins may provide
you with a namespace already, or otherwise you can create one with the following command:

kubectl create namespace influxdb

If you chose a different namespace name than influxdb, you will need to change
.metadata.namespace in myinfluxdb.yml to the namespace name that you created.

Step 2: Install kubecfg kubit operator
Install the kubecfg kubit operator which is maintained by InfluxData. The operator simplifies the
installation and management of the InfluxDB Clustered package. More specifically, we use it to
manage the application of the jsonnet templates that we are using to install our product, and
management of product updates. The official page contains instructions, but TL;DR:

InfluxData Confidential

https://github.com/kubecfg/kubit

Unset

Unset

Unset

kubectl apply -k
'https://github.com/kubecfg/kubit//kustomize/global?ref=v0.0.9'

Step 3: Configure access to container registry
The provided influxdb-docker-config.json gives access to a collection of container images that
are required to run InfluxDB clustered. Your Kubernetes cluster will need access to the
container registry to pull down and install InfluxDB.

There are two main scenarios:
1. You have a kubernetes cluster that can pull from the InfluxData container registry.
2. You run in an air-gapped environment where you can only access a private container

registry.

In both cases you need a valid container registry secret file, let's first make sure the one you're
provided actually works:

<install crane>
mkdir /tmp/influxdbsecret
cp influxdb-docker-config.json /tmp/influxdbsecret/config.json
DOCKER_CONFIG=/tmp/influxdbsecret \
crane manifest \
us-docker.pkg.dev/influxdb2-artifacts/clustered/influxdb:<package-version>

If your docker config is valid and you’re able to connect to the container registry, that command
will succeed and you should see the JSON manifest of that docker image, which looks like this.

{"schemaVersion":2,"config":{"mediaType":"application/vnd.kubecfg.bundle.config
.v1+json","digest":"sha256:6900d2f248e678176c68f3768e7e48958bb96a59232070ff31b3
b018cf299aa7","size":8598},"layers":[{"mediaType":"application/vnd.kubecfg.bund
le.tar+gzip","digest":"sha256:7c1d62e76287035a9b22b2c155f328fae9beff2c6aa7a09a2
dd2697539f41d98","size":404059}],"annotations":{"org.opencontainers.image.creat
ed":"1970-01-01T00:00:00Z","org.opencontainers.image.revision":"unknown","org.o
pencontainers.image.source":"kubecfg pack"}}

InfluxData Confidential

https://github.com/google/go-containerregistry/blob/main/cmd/crane/README.md

Unset

Unset

If there’s a problem with the docker config, then you will not be able to retrieve the manifest, and
the command will error. For example:

Error: fetching manifest
us-docker.pkg.dev/influxdb2-artifacts/clustered/influxdb:<package-version>: GET
https://us-docker.pkg.dev/v2/token?scope=repository%3Ainfluxdb2-artifacts%2Fclu
stered%2Finfluxdb%3Apull&service=: DENIED: Permission
"artifactregistry.repositories.downloadArtifacts" denied on resource
"projects/influxdb2-artifacts/locations/us/repositories/clustered" (or it may
not exist)

Public registry (non air-gapped)

To pull from the InfluxData registry, you need to create a Kubernetes secret in the target
namespace.

kubectl create secret docker-registry gar-docker-secret \
--from-file=.dockerconfigjson=influxdb-docker-config.json \
-n influxdb

You should see “secret/gar-docker-secret created” in response to the above command.

By default this secret is named “gar-docker-secret”. If you need to change the name of this
secret you can, but you must also change the value of the imagePullSecret field in the
AppInstance custom resource to match.

Private registry (air-gapped)
If your kubernetes cluster doesn't have the ability to download container images from our
container registry in the public internet, you will need to:

1. copy the images from our registry to your registry
2. configure your AppInstance with a reference to your registry name
3. provide credentials to your own registry

The list of images that you need to copy is included in the package metadata.
You can obtain it with any standard OCI image inspection tool. For example:

InfluxData Confidential

Unset

Unset

Unset

Unset

DOCKER_CONFIG=/tmp/influxdbsecret \
crane config \
us-docker.pkg.dev/influxdb2-artifacts/clustered/influxdb:<package-version> \
| jq -r '.metadata["oci.image.list"].images[]' \
> /tmp/images.txt

This command will produce a list of image names, like

us-docker.pkg.dev/influxdb2-artifacts/idpe/idpe-cd-ioxauth@sha256:5f015a7f28a81
6df706b66d59cb9d6f087d24614f485610619f0e3a808a73864
us-docker.pkg.dev/influxdb2-artifacts/iox/iox@sha256:b59d80add235f29b806badf741
0239a3176bc77cf2dc335a1b07ab68615b870c
...

You can then copy the images to your private registry, for example, with the crane command:

</tmp/images.txt xargs -I% crane cp % myregistry.mystuff.io/%

To tell InfluxDB where your registry is, set the
.spec.package.spec.images.registryOverride field in myinfluxdb.yml, for example:

apiVersion: kubecfg.dev/v1alpha1
kind: AppInstance
...
spec:
package:
spec:
images:
registryOverride: myregistry.mystuff.io

InfluxData Confidential

Unset

Unset

Step 4: Cluster Setup
Either ingress will need to be provided, or the Nginx Ingress Controller will need to be installed
to use our defined Ingress. If using our Ingress, a valid TLS Certificate is needed and should be
added to the cluster as a secret. That secret name will then be provided to the config in the next
step ("Configure ingress" section).

kubectl create secret tls ingress-tls \
-n influxdb \
--cert=path/to/cert/file \
--key=path/to/key/file

Step 5: Modify configuration to point to prereqs

You must configure the hostname via which k8s will expose the API endpoints. In the rest of this
document we shall refer to the API endpoint as INFLUXDB_URL

Examples: https://influxdb.vpn.my.co

Configure ingress

apiVersion: kubecfg.dev/v1alpha1
kind: AppInstance
...
spec:
package:
spec:

...
ingress:
hosts:
- influxdb.vpn.my.co

tlsSecretName: ingress-tls

The tlsSecretName parameter is optional. You may want to use it if you already have a TLS
certificate for your DNS name.

If instead you want to automatically create an ACME certificate (e.g. with Letsencrypt), please
refer to the certmanager documentation for more details on how to annotate the Ingress

InfluxData Confidential

https://influxdb.vpn.my.co
https://datatracker.ietf.org/doc/html/rfc8555
https://letsencrypt.org/
https://cert-manager.io/docs/usage/ingress/

Unset

resource produced by the InfluxDB installer operator. The operator allows you to add
annotations (e.g. with kubectl annotate) and will preserve them as it operates on resources.
It's your responsibility to install and configure certmanager, if you wish to use it.

You can provide multiple hostnames. The ingress layer will accept requests incoming for all the
listed hostnames. This can be useful if you want to have distinct paths for your internal and
external traffic (e.g. to save on networking costs).

It's your responsibility to configure DNS. Popular options are: a) manually managing DNS
records b) external-dns (often provided by your friendly kubernetes admins).

Configure the Object Store

Update the configuration to point to your Object Store (S3 or equivalent).

apiVersion: kubecfg.dev/v1alpha1
kind: AppInstance
...
spec:
package:
spec:
objectStore:
URL for S3 Compatible object store
endpoint: <S3 url>

Set to true to allow communication over HTTP (instead of HTTPS)
allowHttp: "false"

S3 Access Key
This can also be provided as a valueFrom: secretKeyRef:
accessKey:
value: <your access key>

S3 Secret Key
This can also be provided as a valueFrom: secretKeyRef:
secretKey:
value: <your secret>

Bucket that the parquet files will be stored in
bucket: <bucket name>

This value is required for AWS S3, it may or may not be required for
other providers.

InfluxData Confidential

https://github.com/kubernetes-sigs/external-dns

Unset

Unset

region: <region>

Configure the Catalog

Update the configuration to point to your Postgres DB.

apiVersion: kubecfg.dev/v1alpha1
kind: AppInstance
...
spec:
package:
spec:
catalog:
A postgresql style DSN that points at a postgresql compatible

database.
eg:

postgres://[user[:password]@][netloc][:port][/dbname][?param1=value1&...]
dsn:
valueFrom:
secretKeyRef:
name: <your secret name here>
key: <the key in the secret that contains the dsn>

If your postgres instance runs without SSL, you must pass the sslmode=disable parameter in
the Data Source Name (DSN) parameter, e.g.
postgres://foo:bar@baz:5432/influxdb?sslmode=disable

Configure local storage for Ingesters

The ingesters need some local storage (for the Write Ahead Log).

apiVersion: kubecfg.dev/v1alpha1
kind: AppInstance
...
spec:

InfluxData Confidential

Unset

package:
spec:
ingesterStorage:
Set the storage class. This will differ based on the K8s environment

and desired storage characteristics.
storageClassName: <storage-class>
Set the storage size (minimum 2Gi recommended)
storage: <storage-size>

Configure OAuth2

Update Kubernetes configuration file to point to OAuth provider

To configure your OAuth provider, two fields need to be updated in myinfluxdb.yml:
identityProvider should be set to the name of your identity provider. Note that if you are
using Azure Active Directory, this must be set to “azure”. (This is because for Azure AD, we use
the OID instead of the subject for authentication. For all other OAuth providers, we use the
subject.)

jwksEndpoint should be set to the JWKS endpoint value that was obtained in Configuring
Identity Provider.

This is what the updates to myinfluxdb.yml look for the Keycloak example:

apiVersion: kubecfg.dev/v1alpha1
kind: AppInstance
...
spec:
package:
spec:
admin:
Note for Azure Active Directory it must be exactly "azure"
identityProvider: keycloak
The JWKS endpoint provided by the Identity Provider
jwksEndpoint: |-
{KeycloakDomain}/realms/{KeycloakRealm}/protocol/openid-connect/certs

InfluxData Confidential

https://docs.google.com/document/d/1akVNyDaDpQ-jVw95pllYNm7EBS2KXtMKxdSwX7BATiA/edit#heading=h.12q1ljio1p6
https://docs.google.com/document/d/1akVNyDaDpQ-jVw95pllYNm7EBS2KXtMKxdSwX7BATiA/edit#heading=h.12q1ljio1p6

Unset

Adding users

Finally, you will need to add all the users you wish to have access to use influxctl. Update the
spec.package.spec.admin.users field with a list of these users. See Adding or removing
users for more details.

Configure the size of your cluster
By default, the cluster is configured with 3 ingesters, 1 compactor and 1 querier. This is a
reasonable starting point for your testing. We highly recommend 3 ingesters to ensure
redundancy on the write path. We also highly recommend a single compactor, as it is more
efficient to vertically scale the compactor (assign it more CPU and memory) rather than run
multiple compactors. The number of queriers is determined by how many parallel queries you
are likely to have, and how long they will take to execute. Once you have your cluster up and
running, we will be happy to work with you to recommend appropriate settings for these
parameters, based on your anticipated workload.

This is where the updates to myinfluxdb.yml would go, if you want to change the default
configuration.

apiVersion: kubecfg.dev/v1alpha1
kind: AppInstance
...
spec:
package:
spec:
Uncomment the following block to tune the various pods for their

cpu/memory/replicas based on workload needs.
Only uncomment the specific resources you want to change, anything

uncommented will use the package default.
resources:
The ingester handles data being written
ingester:
requests:
cpu: <cpu amount>
memory: <ram amount>
replicas: <num replicas> # The default for ingesters is 3 to

increase availability

The compactor reorganizes old data to improve query and storage
efficiency.

InfluxData Confidential

https://docs.google.com/document/d/1akVNyDaDpQ-jVw95pllYNm7EBS2KXtMKxdSwX7BATiA/edit#heading=h.ei8ltnqehwzk
https://docs.google.com/document/d/1akVNyDaDpQ-jVw95pllYNm7EBS2KXtMKxdSwX7BATiA/edit#heading=h.ei8ltnqehwzk

Unset

Unset

compactor:
requests:
cpu: <cpu amount>
memory: <ram amount>
replicas: <num replicas> # the default is 1

The querier handles querying data.
querier:
requests:
cpu: <cpu amount>
memory: <ram amount>
replicas: <num replicas> # the default is 1

The router performs some api routing.
router:
requests:
cpu: <cpu amount>
memory: <ram amount>
replicas: <num replicas> # the default is 1

Step 6: Deploy an InfluxDB cluster

kubectl apply -f myinfluxdb.yml -n influxdb

If you want to check on the status of the deployment, you can use the following command

kubectl get -f myinfluxdb.yml -o yaml | yq -P .status.conditions

The status field contains two main useful pieces of information:
● conditions: summary of the what's going on
● lastLogs: verbose logs of the various stages (template expansion and apply)

For example, a common error is caused by bad container registry credentials:

InfluxData Confidential

Unset

Unset

$ kubectl get -f myinfluxdb.yml -o yaml | yq -P .status.conditions
- lastTransitionTime: "2023-08-18T12:53:54Z"
message: ""
observedGeneration: null
reason: Failed
status: "False"
type: Reconcilier

- lastTransitionTime: "2023-08-18T12:53:54Z"
message: |
Cannot launch installation job: OCI error: Authentication failure:

{"errors":[{"code":"UNAUTHORIZED","message":"authentication failed"}]}
observedGeneration: null
reason: Failed
status: "False"
type: Ready

After deploying the cluster, you should expect to see a collection of pods like this (the end of the
names will be slightly different):

$ kubectl get pods -n influxdb

NAMESPACE NAME READY STATUS
RESTARTS AGE
influxdb minio-0 2/2 Running 2
(101s ago) 114s
influxdb catalog-db-0 2/2 Running 0
114s
influxdb keycloak-b89bc7b77-zpt2r 1/1 Running 0
114s
influxdb debug-service-548749c554-m4sxk 1/1 Running 0
91s
influxdb token-gen-56a2e859-zlvnw 0/1 Completed 0
91s
influxdb database-management-579bfb9fcb-dw5sv 1/1 Running 0
91s
influxdb database-management-579bfb9fcb-22qgm 1/1 Running 0
91s
influxdb authz-59f456795b-qt52p 1/1 Running 0
91s
influxdb account-df457db78-j9z6f 1/1 Running 0
91s

InfluxData Confidential

influxdb authz-59f456795b-ldvmt 1/1 Running 0
91s
influxdb account-df457db78-8ds4f 1/1 Running 0
91s
influxdb token-management-754d966555-fmkbk 1/1 Running 0
90s
influxdb token-management-754d966555-rbvtv 1/1 Running 0
90s
influxdb global-gc-7db9b7cb4-ml6wd 1/1 Running 0
91s
influxdb iox-shared-compactor-0 1/1 Running 1
(62s ago) 91s
influxdb iox-shared-ingester-0 1/1 Running 1
(62s ago) 91s
influxdb iox-shared-ingester-1 1/1 Running 1
(62s ago) 91s
influxdb iox-shared-ingester-2 1/1 Running 1
(62s ago) 91s
influxdb global-router-86cf6b869b-56skm 3/3 Running 1
(62s ago) 90s
influxdb iox-shared-querier-7f5998b9b-fpt62 4/4 Running 1
(62s ago) 90s

influxdb kubit-apply-influxdb-g6qpx 0/1 Completed 0

8s

Part 3: Interacting with InfluxDB

Influxctl
Influxctl is the command line tool for administering the InfluxDB product. Download the latest
version of influxctl from influxdata.com/downloads or from the InfluxData Package archive.

Next, create a configuration file, config.toml, for influxctl to interact with the cluster. The
following example uses a cluster running on localhost and port 7080 with Keycloak as the
OAuth2 provider. The host and port is based on the Ingress setup chosen. The client_id,
device_url, and token_url fields should be set to the corresponding values obtained in
Configuring Identity Provider.

InfluxData Confidential

https://portal.influxdata.com/downloads/#influxctl
https://repos.influxdata.com/

Unset

Unset

Unset

[[profile]]
name = "default"
product = "clustered"
host = "localhost" # The hostname/IP of the InfluxDB 3.0 Ingress
port = "7080" # The port of the InfluxDB 3.0 Ingress

(will typically be 80 when using a hostname)

[profile.auth.oauth2]
client_id = "client"
scopes = [""]
token_url = "http://localhost:8080/realms/realm/protocol/openid-connect/token"
device_url =
"http://localhost:8080/realms/realm/protocol/openid-connect/auth/device"

Create a database

The first step in using InfluxDB is to create a database. On the first command run with influxctl,
you will be prompted to authenticate with their OAuth2 provider. Note that your user id must
have been added to myinfluxdb.yml in order for you to be authorized to use the InfluxDB cluster.
Once authenticated, the command will create the requested database.

influxctl --config config.toml database create mytestdatabase

Create a token
Use influxctl to create a token. Ensure you save the token as this is the only time you will ever
see the token string itself.

influxctl --config config.toml token create \
--read-database mytestdatabase \
--write-database mytestdatabase \
mytoken

InfluxData Confidential

Unset

Unset

Unset

Write to InfluxDB
Use the token created above with your favorite /write api tool. If you don’t have a line protocol
file to use, you can start by using our sample file at
https://raw.githubusercontent.com/influxdata/influxdb2-sample-data/master/air-sensor-data/air-sen
sor-data.lp

influx write --token "$TOKEN" \
--host "$INFLUXDB_URL" \
--org testing \
--bucket mytestdatabase \
--file <your-line-protocol.lp>

Query from InfluxDB
Use the token created above with your favorite GRPC query api tool

influxdb_iox query --token "$TOKEN" \
--host "$INFLUX_URL" \
mytestdatabase <SQL Query>

If you used our sample file, the following command will show you the last 15 minutes of sample
data:

influxdb_iox query --token "$TOKEN" \
--host "$INFLUX_URL" \
mytestdatabase 'SELECT * FROM airSensors WHERE time >= now() - 15m'

Appendix

Updating your InfluxDB Cluster
Updating your InfluxDB cluster is as simple as re-applying your app-instance with a new
package version. Note that if the new version of the package has changes to the AppInstance

InfluxData Confidential

https://raw.githubusercontent.com/influxdata/influxdb2-sample-data/master/air-sensor-data/air-sensor-data.lp
https://raw.githubusercontent.com/influxdata/influxdb2-sample-data/master/air-sensor-data/air-sensor-data.lp

schema, those changes will need to be made at the same time that the new package is
deployed.

Redeploying your cluster safely
The word safely here means being able to redeploy your cluster while still being able to use the
tokens you’ve created, and being able to write/query to the database you’ve previously created.

All of the important state in Influxdb 3.0 lives in the Catalog (the Postgres equivalent database)
and the Object Store (the S3 compatible store). These should be treated with the utmost care.

If a full redeploy of your cluster needs to happen, the namespace containing the Influxdb
instance can be deleted as long as your Catalog and Object Store are not in this
namespace. Then, the influxdb AppInstance can be redeployed. It is possible the operator may
need to be removed and reinstalled. In that case, deleting the namespace that the operator is
deployed into and redeploying is acceptable.

Backing up your data
The Catalog and Object store contain all of the important state for Influxdb 3.0. They should be
the primary focus of backups. Following the industry standard best practices for your chosen
Catalog implementation and Object Store implementation should provide sufficient backups. In
our Cloud products, we do daily backups of our Catalog, in addition to automatic snapshots, and
we preserve our Object Store files for 100 days after they have been soft-deleted.

Recovering your data
After recovering the catalog and object store, you will need to update the dsn in myinfluxdb.yml
and re-apply.

Configuring Identity Provider

Keycloak
To configure Keycloak as your identity provider, you must have a Keycloak realm with users
added and a Keycloak client with device flow enabled. You also need to configure your
Clustered config file and your influxctl profile to reference the Keycloak realm/client.

Create a New Keycloak Client

1. In the Keycloak Admin Console, navigate to Clients from the left-hand-nav and click
“Create Client”.

InfluxData Confidential

Unset

2. On the General Settings step, set the “Client type” to “OpenID Connect” and enter a
“Client ID”, then click “Next”. This Client ID will be used later when configuring Clustered.

3. On the Capability config step, enable the “OAuth 2.0 Device Authorization Grant”
Authentication flow, then click “Next”.

4. On the Login settings step, don’t change anything and just click “Save”.

Configure InfluxDB Clustered to Use Keycloak

Navigate to {Keycloak Domain}/realms/{Keycloak Realm}/.well-known/openid-configuration
to retrieve a json of the OpenID configuration values for your Keycloak realm.

Copy the following values from the response:
● "jwks_uri"

○ example:
○ {Keycloak Domain}/realms/{Keycloak Realm}/protocol/openid-connect/certs

● "device_authorization_endpoint"
○ example:
○ {Keycloak Domain}/realms/{Keycloak

Realm}/protocol/openid-connect/auth/device
● "token_endpoint"

○ example:
○ {Keycloak Domain}/realms/{Keycloak Realm}/protocol/openid-connect/token

In your configuration yaml for clustered (for example, myinfluxdb.yml - see Step 5), set your
identityProvider to keycloak (all lowercase) and your jwksEndpoint to the jwks_uri you copied.

Example:

...
spec:
admin:
identityProvider: keycloak
jwksEndpoint: |-
{Keycloak Domain}/realms/{Keycloak Realm}/protocol/openid-connect/certs

In your configuration TOML for the influxctl CLI (see Step 7), set the client_id to the Client ID
that you specified in step 2 of the previous section; your device_url to your
device_authorization_endpoint; and your token_url to your token_endpoint.

Example:

InfluxData Confidential

Unset

[profile.auth.oauth2]
client_id = “your_client_id”
device_url =
"http://localhost:8080/realms/your_realm/protocol/openid-connect/auth/device"
token_url =
"http://localhost:8080/realms/your_realm/protocol/openid-connect/token"

Azure
To configure Azure as your identity provider, you need an existing Azure Active Directory (aka
Microsoft Entra ID) tenant, with your users added. Copy your Azure AD Tenant ID.

Retrieve a json of the OpenID configuration values for your Azure AD Tenant by navigating to
the openid configuration endpoint. For Azure, you must use the values from the v2 endpoint.

https://login.microsoftonline.com/{AZURE_TENANT_ID}/v2.0/.well-known/openid-configurat
ion

Configure the Azure AD Portal

In the Azure Portal, select “App Registrations” (left-hand nav), click “New Registration” (top nav),
and enter a name for a new application to handle authentication requests. Hit “register
application.” Copy the Application (Client) ID for this newly registered app.

Within your newly registered application, click the “Authentication” menu on the left-hand side of
the screen. Scroll down to “Advanced Settings” and set “Allow public client flows” to “yes.” This
will enable use of the “device code” flow for logging in to InfluxDB Clustered.

Configure InfluxDB Clustered to Use Azure AD

Retrieve the json of the OpenID configuration values for your Azure AD Tenant by navigating to:

https://login.microsoftonline.com/{AZURE_TENANT_ID}/v2.0/.well-known/openid-configurat
ion

Copy the following values from the response.

● “jwks_uri”
○ https://login.microsoftonline.com/{AZURE_TENANT_ID}/discovery/v2.0/keys

● "device_authorization_endpoint"
○ https://login.microsoftonline.com/{AZURE_TENANT_ID}/oauth2/v2.0/devicecod

e

InfluxData Confidential

https://learn.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-device-code

Unset

Unset

● “token_endpoint”
○ https://login.microsoftonline.com/{AZURE_TENANT_ID}/oauth2/v2.0/token

In your configuration YAML for clustered (for example, myinfluxdb.yml - see Step 5), set your
identityProvider to azure (all lowercase) and your jwksEndpoint to the jwks_uri you copied.

Example:

...
spec:
admin:
identityProvider: azure
jwksEndpoint: |-
https://login.microsoftonline.com/{Azure Tenant ID}/discovery/v2.0/keys

In your configuration TOML for the influxctl CLI (see Step 7), set the client_id to your
Application (Client) ID; your scopes to [“{your application (client) id}/.default”] ; your
device_url to the v2.0 device_authorization_endpoint; and your token_url to the v2.0
token_endpoint;

Example:

[profile.auth.oauth2]
client_id = “ff5c3415-17b1-4220-ac78-5631a6891b9d”
scopes = ["ff5c3415-17b1-4220-ac78-5631a6891b9d/.default"]
device_url =
"https://ff5c3415-17b1-4220-ac78-5631a6891b9d/oauth2/v2.0/devicecode"
token_url =
"https://login.microsoftonline.com/ff5c3415-17b1-4220-ac78-5631a6891b9d/oauth2/
v2.0/token"

Adding or removing users

Finding User ID
When specifying users in myinfluxdb.yml, you must provide the id that your identity provider
uses to identify the user. For Azure, this is the OID in any JWTs for that user. For all other
providers, it is the Subject in the JWT.

InfluxData Confidential

Unset

Keycloak

For Keycloak, you can find the user ID either through the admin console or the REST API. In the
admin console, navigate to your realm, then to users, and then to the user you wish to find the
ID for. The ID should be listed in the Details tab. With the REST api, you can make a get
request to the following url to fetch the ID for a specific user.

https://{keycloak-domain}:{keycloak-port}/auth/admin/realms/{realm-name}/users?
username=testUser

Azure

For Azure AD, the unique user id is the Microsoft ObjectId (OID). You can download a list of the
OIDs for all users in your Tenant by navigating to the “Users” page, selecting the checkbox for
the users you wish to download (click the top checkbox to select all users), and clicking the
“Download Users” button at the top of the screen. In the downloaded CSV file, the users’ OIDs
are reflected in the id field.

Auth0

For Keycloak, you can find the user ID through the web UI. Log in to your tenant and navigate to
User Management. From there, search for the user. Once found, the user ID can be found at the
top of the page under the user's name.

Applying Changes
To add or remove users, update the users list in myinfluxdb.yml file. The users list is found at
spec.package.spec.admin.users. After updating the list, re-apply myinfluxdb.yml. See Step 6:
Deploy an InfluxDB cluster for details on how to apply myinfluxdb.yml. Once the myinfluxdb.yml
has been applied, it will take a couple minutes for the updates to roll out. When complete, any
new users will have been added and any removed users will have been deleted.

Custom CA

See example-customer.yml section on "Custom CA"

InfluxData Confidential

